Adaptive rewiring of oncogenic signaling in response to MTOR blockade in pancreatic cancer

Katja Ascherl1, Christian Schneeweis1, Zonera Hassan1, Matthias Wirth2, Roland Rad1, 3, Maximilian Reichert1, 4, Dieter Saur1, 3, and Günter Schneider1, 3

1Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, 81675 München, Germany
2Institute of Pathology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany
3German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
4Division of Gastroenterology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

Background:
Pancreatic ductal adenocarcinoma (PDAC) still carries a dismal prognosis with overall five-year survival of 8% and currently used therapies need urgent improvement. Although preclinical data show that the PI3K-AKT-MTOR pathway is a relevant pathway for therapeutic intervention, clinical trials have failed so far. Therefore, detailed molecular knowledge on how PDAC escape PI3K-AKT-MTOR inhibition is needed.

Methods:
By the use of a dual-recombinase system, which is based on the flippase-FRT (Flp-FRT) and Cre-loxP recombination technologies, we generated a murine PDAC model allowing the genetic analysis of MTOR functions in tumor maintenance and adaption of PDAC cells to the loss of MTOR expression. RNA-seq data were analyzed to find pathways relevant to cope with MTOR deletion. Cross-species validation and pharmacological intervention studies were used to recapitulate genetic data and to develop novel combination therapies. Viability and clonogenic assays were used to validate novel combination therapies.

Results:
Blocking MTOR genetically as well as pharmacologically results in adaptive rewiring of oncogenic signaling with activation of ERK- and AKT- pathways. In addition, analysis of RNA-seq data demonstrated activation of the pro-survival NFκB signaling pathway. In contrast to ERK- and AKT-activation, which occur with latency, activation of NFκB target genes was already detected six hours after MTOR inhibition, an effect blocked by BET inhibitors (e.g. JQ1
or OTX-015). Consequently, MTOR inhibitors (e.g. INK-128) and BET inhibitors synergize in human and murine PDAC models.

Conclusions:

Our data demonstrate that MTOR inhibitor induced adaptive expression of NFκB target genes can be blocked by BET inhibitors. MTOR- and BET-inhibitor combination therapies should be further developed in PDAC.