Fundamentals of fluorescence tomography and its application in biological imaging

Angelique Ale

Institute for Biological and Medical Imaging (IBMI)
Technical University of Munich and Helmholtz Center Munich

SFB A1: Pre-clinical evaluation of individualized therapy monitoring using Fluorescence Molecular Tomography
SFB Z3: Multimodal Imaging Core
Background

Fluorescence Molecular Tomography
FMT- Fluorescence Molecular tomography

Subject

Active probes

Activatable probes

Tissue absorption

Illumination

Excitation

Emission at lower energy (longer wavelength)

in vivo imaging

Absorption coefficient (cm⁻¹)

Wavelength (nm)

400 500 600 700 800 900

0.01 0.1 1 10 100
FMT- Fluorescence Molecular tomography

Diffusion

\[-\nabla \left[D_x (r) \nabla \Phi_x (r) \right] + \mu_{ax} (r) \Phi_x (r) = S_x (r) \]

\[-\nabla \left[D_m (r) \nabla \Phi_m (r) \right] + \mu_{am} (r) \Phi_m (r) = -\Phi_x (r) n(r) \]
FMT- Fluorescence Molecular tomography

Diffusion Equation

\[-\nabla \left[D_x(r) \nabla \Phi_x(r) \right] + \mu_{ax}(r) \Phi_x(r) = S_x(r)\]

\[-\nabla \left[D_m(r) \nabla \Phi_m(r) \right] + \mu_{am}(r) \Phi_m(r) = -\Phi_z(r) n(r)\]
FMT- Fluorescence Molecular tomography

Diffusion Equation

\[-\nabla\left[D_x(r)\nabla\Phi_x(r)\right] + \mu_{ax}(r)\Phi_x(r) = S_s(r)\]

\[-\nabla\left[D_m(r)\nabla\Phi_m(r)\right] + \mu_{am}(r)\Phi_m(r) = -\Phi_x(r)n(r)\]

<table>
<thead>
<tr>
<th></th>
<th>Tissue</th>
<th>Bone</th>
<th>Lung</th>
<th>Heart</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_a (cm(^{-1}))</td>
<td>0.3</td>
<td>0.1</td>
<td>0.25</td>
<td>0.35</td>
</tr>
<tr>
<td>μ'_s (cm(^{-1}))</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>23</td>
</tr>
</tbody>
</table>
FMT- Fluorescence Molecular tomography

Diffusion Equation

\[-\nabla \left[D_x(r) \nabla \Phi_x(r) \right] + \mu_{ax}(r) \Phi_x(r) = S_x(r)\]

\[-\nabla \left[D_m(r) \nabla \Phi_m(r) \right] + \mu_{am}(r) \Phi_m(r) = -\Phi_x(r)n(r)\]

<table>
<thead>
<tr>
<th></th>
<th>Tissue</th>
<th>Bone</th>
<th>Lung</th>
<th>Heart</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_a [cm$^{-1}$]</td>
<td>0.3</td>
<td>0.1</td>
<td>0.25</td>
<td>0.35</td>
</tr>
<tr>
<td>μ_s [cm$^{-1}$]</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>23</td>
</tr>
</tbody>
</table>
Experiments

From FMT to Hybrid FMT-XCT
Lung inflammation model

Mouse + LPS from Escheria Coli

E-Coli

LPS molecule

LPS from Escheria Coli

Antigen

Core

Lipid A

Activatable probe

activated by cathepsins
Activatable probe: ProSense (Visen)
FMT- Fluorescence Molecular tomography

Excitation

Excited lifetime

Emission at lower energy (longer wavelength)

Illumination

Excitation / Emission filters

Measurement

NIR laser

CCD camera
Single wavelength experiment

Haller J et al., Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging, J. Appl. Physiol, 2008
Single wavelength experiment

Emission = Excitation

Haller J et al., Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging, J. Appl. Physiol, 2008
Single wavelength experiment

A

White light image

E

Normalized

F

x10^{-4}

Fluorescence Tomography

Haller J et al., Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging, J. Appl. Physiol, 2008
Dual wavelength experiment

Activatable probes
- 750 nm (780-820nm) - ProSense

Active probes
- 680 nm (705-715nm) - AngioSense
Dual wavelength experiment

Reflectance image

Transillumination

Fluorescence Tomography

A

B

C

D

E

F

G

H

I

J

LPS instilled

Control

ProSense

AngioSense

ProSense

Angiosense

Haller J et al., Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging, J. Appl. Physiol, 2008
Semi-hybrid experiment

Fluorescence Reflectance Images

Fluorescence reflectance

Ntzachristos V et al., Looking and listening to light: evolution of whole-body photonic imaging, Nature Biotechnology, 2005
Semi-hybrid experiment

Fluorescence Transillumination

Fluorescence reflectance Fluorescence Transillumination

Ntziachristos V et al., Looking and listening to light: evolution of whole-body photonic imaging, Nature Biotechnology, 2005
Semi-hybrid experiment

Fluorescence reflectance

Fluorescence Transillumination

Fluorescence Tomography

Ntziachristos V et al., Looking and listening to light: evolution of whole-body photonic imaging, Nature Biotechnology, 2005
Semi-hybrid experiment

Fluorescence reflectance
Fluorescence Transillumination

Fluorescence Tomography

MRI

Ntziachristos V et al., Looking and listening to light: evolution of whole-body photonic imaging, Nature Biotechnology, 2005
Hybrid FMT-XCT System
Hybrid FMT-XCT system

Schulz et al., Hybrid System for Simultaneous Fluorescence and X-ray computed tomography, IEEE Transactions on Medical Imaging, 2009
Hybrid FMT-XCT system

Schulz et al., Hybrid System for Simultaneous Fluorescence and X-ray computed tomography, IEEE Transactions on Medical Imaging, 2009
Advantages

- seamless coregistration
- assign attenuation coefficients to anatomical regions
- structural prior information
FMT- data

Multiple projections from all sides (360°)

NIR laser → Measurement → CCD camera

Example of resulting data

Fluorescence → Excitation

Normalized data = Fluorescence/Excitation
Example of thorax slice

- Spine
- Lungs
- Heart
- Ribs
Hybrid FMT-XCT

Reconstruction methods
Standard reconstruction method

Simulation - Distributed

Simulation - Localized

Tikhonov regularization

Tikhonov regularization
Reconstruction method

\[F(x) = \| y - Wx \|^2 + \lambda^2 \| Lx \|^2 \]

- **Residual**
- **Penalty**
- **Regularization parameter**
- **Regularization matrix**
Standard Tikhonov regularization

\[F(x) = \| y - Wx \|^2 + \lambda^2 \|lx\|^2 \]

residual penalty

\[L = \text{Identity matrix} \]

Large negative and large positive values are penalized

Smoothing towards zero
Include prior information

Segmentation

$L = \text{identity matrix}$
Include prior information

Segmentation

\[L = \text{diagonal matrix} \]

Hyde D et al. (2008) New techniques for data fusion in multimodal FMT-CT imaging, 5th IEEE int. symp. on biomedical imaging: From nano to macro
Result with prior information

Simulation - Distributed
Segmentation
Reconstruction

Simulation - Localized
Segmentation
Reconstruction
Hybrid FMT-XCT

Lung inflammation model
Lung inflammation model

Alexa 680 in lungs Hybrid FMT & XCT Planar Cryo Imaging
Lung inflammation model

Position of slices

X-ray slice

Reconstruction using priors

RGB (Cryo)

Validation image

Normalized fluorescence (Cryo)
Reconstruction

RGB Validation image Reconstruction
Reconstruction
3D Reconstruction
Hybrid FMT-XCT

Biological Applications
Tumor Imaging

Tumor Model

4T1 subcutaneous tumor + Probe
Tumor Imaging with Eva Herzog

Prosense ➔ Indicating proteases

ApoPSS ➔ Indicating Apoptosis
Tumor Imaging

- **Prosense**: Indicating proteases
- **ApoPss**: Indicating Apoptosis
Hybrid FMT-XCT

Osteogenesis Imperfecta
Osteogenesis Imperfecta

With Vladimir Ermolayev in cooperation with Christian Cohrs (Group of Prof. M. De Angelis, Inst. Of Experimental Genetics)

Aga2/+ model

- Bone fractures
- (Lung) bleedings

Lisse et al., 2008

4 x

OsteoSense 680

Bone growth and bone remodelling

FMT - XCT
Bone fractures

Mouse 1
Mouse 2
Mouse 3
Mouse 4
Cryoslices - OsteoSense

Mouse 4 (max 1.3)

Mouse 3 (max 0.5)
Reconstruction: Mouse 4

- Functional prior information
Reconstruction: Mouse 4

Cryoslices

Reconstruction
- Structural and Functional Prior information
Reconstruction: Mouse 4

- Structural and Functional Prior information

Isosurface
Lower threshold

Isosurface
Higher threshold
Reconstruction: Mouse 4

- Structural and Functional Prior information
Reconstruction: Mouse 4

- Structural and Functional Prior information
Thank you

Acknowledgements

Institute for Biological and Medical Imaging

Vasilis Ntziachristos
Ralf Schulz
Vladimir Ermolayev
Eva Herzog
Athanasios Sarantopoulos
Karin Radrich
Max Koch
Tom Pyka
Claudia Mayerhofer
Sarah Glasl

Chair for Biological Imaging: www.cbi.ei.tum.de
Institute: http://www.helmholtz-muenchen.de/en/ibmi/